Study shows how water dissolves stone, molecule by molecule

Dec 05, 2013
Study shows how water dissolves stone, molecule by molecule
The dissolution process of a crystalline structure in water is shown: two bonded SiO4 -- molecules dissolve (top left), a quartz crystal (top right) and the computer-simulated surface of a dissolving crystalline structure (below). Credit: MARUM & Rice University
Scientists from Rice University and the University of Bremen's Center for Marine Environmental Sciences (MARUM) in Germany have combined cutting-edge experimental techniques and computer simulations to find a new way of predicting how water dissolves crystalline structures like those found in natural stone and cement.
In a new study featured on the cover of the Nov. 28 issue of the Journal of Physical Chemistry C, the team found their method was more efficient at predicting the dissolution rates of  in water than previous methods. The research could have wide-ranging impacts in diverse areas, including water quality and planning, environmental sustainability, corrosion resistance and cement construction.
"We need to gain a better understanding of dissolution mechanisms to better predict the fate of certain materials, both in nature and in man-made systems," said lead investigator Andreas Lüttge, a professor of mineralogy at MARUM and professor emeritus and research professor in Earth science at Rice. His team specializes in studying the thin boundary layer that forms between minerals and fluids.
Boundary layers are ubiquitous in nature; they occur when raindrops fall on stone, water seeps through soil and the ocean meets the sea floor. Scientists and engineers have long been interested in accurately explaining how crystalline materials, including many minerals and stones, interact with and are dissolved by water. Calculations about the rate of these dissolution processes are critical in many fields of science and engineering.


No comments:

Powered by Blogger.